
11

Random input
testing with R

Patrick BurnsPatrick Burns
http://www.burnshttp://www.burns--stat.comstat.com

2011 August

Given at useR!2011 at the University of Warwick on 2011 August 17 in
the Programming session, Uwe Ligges presiding.

2

The goal is for us to have fewer bugs in our code.

Photo from istockphoto.com

3

We’ll start with a bit about the application that drove me in the
direction that I’ve come.

The application is portfolio optimization in finance. The textbook
version of this is quadratic programming – that’s an easy problem.

The reality is that it is a species of the knapsack problem: what is the
best bundle of stuff that you can carry with you? That’s a hard
problem.

How hard?

Let’s think about doing it via brute force.

Photo by David Weekly via everystockphoto.com

4

We’ll take a small problem.

Photo via istockphoto.com

5

We’ll make some blue sky, absolutely optimistic assumptions.

Photo via istockphoto.com

6

Unit timeof

Now we need a unit of time to state how long this process will take.

I have one in mind, what is it?

7

The first guess from the audience was right: the age of the universe.

There is a combinatorial explosion that makes this a fantastically hard
problem.

Wilkinson Microwave Anisotropy Probe image from NASA

8

Not everyone is keen on the wait.

Photo from istockphoto.com

9

So in my code I have a number of shortcuts to speed up the process.

Nothing could possible go wrong here.

Photo by jurvetson via everystockphoto.com (I think)

10

Utilities

Maximise information ratio
Minimum variance
Maximum return
Mean-variance utility
Mean-volatility utility
Minimize distance to a portfolio
With or without transaction costs

Linear costs
Polynomial costs
Multiple terms with arbitrary exponents
Separate costs for long-buy, long-sell, short-buy, short-sell

With or without multiple expected return vectors
With or without multiple variance matrices
With or without multiple target portfolios
Choice of quantile in multiple utility cases
Can use weights in multiple utility cases

When doing optimization, we need a utility. So pick one.

11

Constraints

Long-only (or not)
Value of gross, net, long, short
Turnover
Maximum weight (per asset)
Number of assets traded
Number of assets in portfolio
Threshold (portfolio and/or trade)
Linear

On portfolio or trade
On net or gross
On long-side, on short-side, or both
Count constraints

Forced trades
Assets to trade
Number of positions closed
Round lotting (automatic)
Risk fractions

Expected return
Variance
Distance
Sum of n largest weights
Cost

There will also be a set of constraints which is a subset of all possible
constraints.

So there is a combinatorial explosion of inputs that is similar to the
combinatorial explosion that makes it a hard problem in the first place.

And we want to test to see if the code works.

12

Fixed problem

Right result?

The standard approach to software testing is to produce a fixed problem
and ask if we get the correct answer.

Perhaps you can spot that already I have a problem.

13

Fixed problem

Rightish result?

If it takes billions of years to get one right answer, perhaps my test suite
will be a bit thin for a while.

I can’t ask if I have the right answer. I can only ask if the answer is sort
of right.

14

Rightish answers

Sanity check shortcuts
Sanity check result
Close to best observed?

To see if an answer appears right, there is a large number of checks in
test mode that squawk if something doesn’t look right. In particular
almost all shortcuts are also computed the long way in test mode and
the two results compared.

There are checks to see if the result makes sense.

Since my optimization algorithm is random, it will potentially get
different answers when using different seeds. Hence we can see if the
current answer is close to the best answer that has been observed. This
gives us a sense of how well the algorithm works on the particular
problem.

15

testthat

RUnit

svUnit

If you are creating a standard type test suite for R code, then there are a
few packages that can help you.

16

Fixed problem

Right result?

I have a standard test suite. But no matter how expansive my suite
becomes, I will only ever test a tiny fraction of the possible
combinations of inputs.

And writing a standard test suite is quite labor-intensive.

Plus there can be bias in the test. As someone said to me after the talk,
we may have an unconscious desire NOT to find bugs.

Hence looking for alternatives to standard testing seems like a
worthwhile endeavor.

17

Random problem

Any explosions?

One alternative type of test is to create random inputs and then smell
for smoke.

18

Create inputs

Call code

Look at output

There are three steps in doing this.

If the code you are testing is not R code, then R is still a great place to
do the first step of creating the random inputs.

If you are testing R code, then there are two key functions in
performing the second step of calling the code.

19

do.call

If you don’t know this function, you should.

It allows you to call a function with an actual list of arguments.

So in the present case, we create a list containing the random inputs that
were created in step 1, and then call the function being tested.

20

try

tryCatch

or

These are slightly different ways of doing the same thing.

They catch the errors from the test cases so that the errors don’t leak out
into the actual test suite.

21

When doing random testing, there are several things that can happen.
Here is the tree of those things.

22

Get answer

We can get an answer as opposed to an error.

23

Get answer
okay

Boring.

24

Get answer
wrong

Not boring.

25

Get answer
wrong

Bad, bad, bad computer!

We don’t like to be here. But it does make the effort of testing seem
worthwhile.

If we are here, then we want to fix the problem. There are two more
things we should do as well:

1. Create a case to put in the standard test suite for this problem.
Random testing is an adjunct to standard testing, not a replacement.

2. Look through the code for other occurrences of this same sort of
problem.

26

Get answer
inefficient

We can get the right answer via an inefficient (in time or memory)
route. In my current application I’m not going to know this, but in
other applications it is feasible to spot this.

27

Get error

We can get an error rather than an answer.

This is a wonderful reason to do random testing. Standard test suites
seldom to never exercise the code that throws errors. Random testing
can exercise it a lot.

You could create a test where you don’t even expect to get an answer –
you’re just testing the error throwing. This, of course, is entirely
divorced from my original motivation for this sort of testing.

28

Get error
Caught

When we get an error, it can be caught by the code we’ve written.

29

Get error
Caught

Not clear

If the error message is not clear, then we should change the error
message.

30

Get error
Caught

Clear

If the error message is clear, then we should question that assumption.

When we are coding, we have the curse of knowledge: we know
everything that is going on. So any error message that we write is
going to make sense to us.

We should try to put ourselves in the frame of mind of a user who is not
especially clued in.

31

Get error
Not caught

If the error message is not caught by our code,

32

Get error
Not caught

Not clear

33

Get error
Not caught

Clear

we should consider catching it because it is even harder in that case for
the message to be clear to our not-so-clued-in user.

34

I find writing test suites to be as exciting as digging ditches.

Of all the tasks involved in creating software, this is the lowest of the
low for me.

I had expected the same to be true for random testing.

Photo by KayPat via stock.xchng

35

But I found random testing to have a quite different ambience to it. It is
much more like playing.

Standard tests are basically static – write them once, periodically add
bits to them, use them many times.

Random testing is more like an interactive game: do a bit, see how it
goes, do some more, see how it goes, …

Keeping track of the different versions of the random tests is a good
idea. You can go back and use a primitive test on a new version of the
software. You can also use a primitive version as the basis for going
off in a different testing direction.

I hope to see you on the playground.

Photo by forst747 via stock.xchng

36

One of the good things about giving a talk is that the audience tells you
the name for what you are doing. “Fuzz testing” is a common word
for random input testing.

One of the key questions is what distribution to use. The distribution
will depend on your goal. It seems like there are three basic goals:

1. Test the correctness of answers
2. Test error throwing code
3. Test for security issues

The last of these is most closely associated with “fuzz testing”.

37

If your goal is one of the latter two, then the distributions should be
very wide. That is, lots of stuff that need not even make any sense at
all.

If you are trying to test the error throwing, then you probably want a
more refined test as well that has arguments closer to what is expected.

If your goal is to test answers, then it seems to me that there are two
possibilities:

• A distribution aiming at what is likely to be done in practice
• A distribution aiming at most likely to generate bugs

The reason that random testing is more fun is because it is really
programming – writing the code that creates the distributions.

38

In my tests I have them start by doing two things:
• Print the set-seed number so that results are reproducible
• Print the version of the test being used

My tests so far have used the iteration variable as the set-seed number.
Martin Maechler had a better idea: generate a random set-seed number.
That way there is no need to keep track of what iterations have already
been done with each test.

39

The business end of my random test function looks like:

ans <- try(do.call(“trade.optimizer”,

c(thisdata, extra.args)))

if(inherits(ans, “try-error”)) {

cat(“\n error with seed”, the.seed, “\n\n”)

} else {

pprobe.check(ans)

}

